Discuss Real world testing example of Condensing Boiler in older home in the Central Heating Forum area at PlumbersForums.net

I would say the pump is sized correctly you have a few too many rads for a 15-60 balance the rads first and come back
 
If the system requires a 5M head which the pump is set to now then a 8M replacement necessary as the UPS3 will only service 8kw of rads at dt 6C, 13kw @ dT 10C & 19kw @ dT 15C. all at a 5M head .

Carrying out some quite interesting "throttled" tests with my 20kw Firebird + Smart pump which can be set up to give the exact flow just by looking at the power/pump curves, will post later.
 
Did some testing this morning, I set the pump to constant speed setting of 5M to correspond to your setting, I then shut the pump discharge valve and confirmed that the pump power was 21W at no flow, I reopened pump discharge valve and throttled the suction valve to give me 24W which gives a flowrate of 5LPM (at 5M). The (20kw) boiler cycled 6 min on and 6 min off with measured temps exactly as below, the return was 44/42C, avg 43C and the boiler flow 77/69C, avg 73C.

Carried out these tests on rads with a total output of 15kw with all the TRVs full open.
Will do some more later on this evening with all systems on (apart from HW cylinder) and fully up to temperature with suction valve still throttled in.


1642165439451.png
 
Interesting thread. This is the kind of investigative spirit we need to have if we're really to make meaningful improvements to heating systems.

Re the infra-red thermometer, I find they work really well. However, they are usually geared to high-emissivity surfaces (it should normally explain that in the destructions). As such, any reasonably shiny metallic surface can't really be read accurately as it is a low-emissivity surface. However, there is an easy fix in that a piece of masking tape on the pipe can be used as a reliable test point.
 
Yes I have used the tape trick before on IR thermometers but it's not working this time unfortunately. The readings with IR gun are all over the place so no good.

I ordered more of the little digital thermometers on ebay as they are less than £3.50 each. And for accurate radiator balancing for dummies I ordered one of these:

Screenshot_20220115-133632_eBay.jpg

It can display either temperature reading from the clamps and / or the actual temperature drop. I would like to make sure all rads and precisely balanced so this should do it.

Awaiting the other stuff too before I can re run the tests before and after re jetting the boiler.

Interesting that John's Firebird has a 6 minute cycle and mine is so much shorter at just over 1 min. I wonder is this a difference in thermostats? Or the heating demand? Most likely the former.

When heating is on later I will turn down the ball valve on return and see if I can reduce the return temp to 20 for the moment and / or at what point of return temp does the condensing start again. Would like to know that information at least in my oil boiler.

In a way its kind of a shame oil burners have "dumb" controls. They can't modulate down like their gas counterparts and on top of that it is difficult to find a weather compensator compatible with a standard system anymore. Correct me if I'm wrong but you could buy generic weather compensators 10 or 15 years ago but the advances in gas boiler controls must have done away with the generic "fits all" compensators.
 
Interesting thread. This is the kind of investigative spirit we need to have if we're really to make meaningful improvements to heating systems.

Re the infra-red thermometer, I find they work really well. However, they are usually geared to high-emissivity surfaces (it should normally explain that in the destructions). As such, any reasonably shiny metallic surface can't really be read accurately as it is a low-emissivity surface. However, there is an easy fix in that a piece of masking tape on the pipe can be used as a reliable test point.

Thanks for the comments, I wasn't sure how this thread might be perceived but I hear and read different opinions on condensing boilers and I for one am genuinely curious on how efficient they are and what can be achieved for optimum running
 
Sorry to also ask a stupid question here but just so I understand correctly:

Radiator flow and balancing to obtain the desired 11c drop:

If the flow is too low then the radiator is too cold may not even heat at all. That's simple.

If the flow is too high what would happen? Eg locksheild fully open? With too much flow radiator would be very hot, putting put alot of heat but may have only 3c drop say.

In that case then are we saying that by turning down the lockshield / reducing flow the desired 11c drop is tunable? And in this condition the radiator/ system should have optimum heat output to room? With the primary aim being to slow the hot water so it transfers its heat to the room.
 
If it’s low flow you will struggle to balance it properly as chances are you increase the resistance the water might stop to that rad but that’s normally cause by two things blockage or bad / incorrectly sized pump

And yes spot on see with them fully open the water isn’t given the chance to full transfer it’s heat eg 10dc difference so you need to slow the outgoing water down to give you more temp drop you will get to a point where closing more of the lockshield won’t increase the drop
 
This is getting interesting- downstairs zone now. Restricted the return so as the boiler is supplying 70 and return at or below 45c.

Burn time 2 Min 05 secs. Off time 2 min 30 secs.

Watching now to see how low the return stabilises to and if any condensate starts to be produced. As a barometer for when condensing will occur on the return temp.

20220115_165855.jpg

Edit- down to 36.5c return temp now and still zero condensing action! Oil condensing boilers only condense on first warmup it appears - in real world conditions this new Firebird boiler is NOT condensing even at 36c.

So consider them as high efficiency only in this case.
 
Last edited:
I'm not sure re Firebird condensate trap but some traps, to avoid the waste pipe freezing up, fill up the trap with condensate and then blows this down and refills again so on the off chance that this is occuring keep a eye on it but I wouldn't hold my breath as firebird supplied a plastic trap originally which used to melt.
 
I'm not sure re Firebird condensate trap but some traps, to avoid the waste pipe freezing up, fill up the trap with condensate and then blows this down and refills again so on the off chance that this is occuring keep a eye on it but I wouldn't hold my breath as firebird supplied a plastic trap originally which used to melt.

I can edit my post above but I suppose mybtwst conditions there were incorrect. Restricting the return means the boiler isn't actually firing anywhere near what it would normally be. The radiator temps dropped inside the house.

So when I just reopened the ball valve there whilst return temp was below 40c approx and the burner firing there was some condensate being produced albeit only about 50ml. I suppose I would need a Lower c stat in order to conduct that test properly.

I am collecting all condensate during the tests with a very advanced setup- a coke bottle with a hole cut in the side 😃

20220115_183009.jpg
 
I am still also exploring boiler compensators. Or Boiler Energy Managers as they appear to the called. This one is also interesting:


I will email them and ask if all required parts are included in the price. And for a wiring diagram to see if it's compatible with my controls. This would be further down the line not in the next few weeks
 
I spotted a great deal on one of these and bought it last night


Screenshot_20220116-112918_Samsung Internet.jpg

It's brand new unused. I believe my boiler is switching on and off too much. I think this device is aimed to reduce boiler cycling by learning the boiler demand and firing cycles and reducing the latter.

This is a boiler energy manager not a Weather Compensator but I suppose you have have both if you wanted. I think it goes between the boiler stat and burner.

In any case this would only go on once I get the system balanced and boiler jetting complete. Then the simple meters will show what savings it is bringing. Reading up on it they appear to offer savings of 15 - 30% on boiler firing time.

They appear to guard how exactly it operates so I would imagine I there will be no instructions supplied and I'll have to study it and see what inputs it requires.

 
I am going to carry out a test on just one rad soon because as you say, the only sort of fit is if the flow temperature falls as well, see below. I'm quite happy that I had a flow rate of 5LPM both by throttling the 5M pump setting to replicate yours and then at a pump head of ~ 3m unthrottled to give me the same 5LPM. As the boiler output was fairly constant (cycling) at 45 to 50% then the only scenarios that sort of fit are the last two below, ie a flow temp of 64C & return of 35C for 50% output and 45% output at 60C/34C, I didn't see my return going below 42/43C, the only explanation I can give for a apparent low flow temp is that a oil fired boiler acts as a 20/25 litre buffer tank and with the burner off perhaps cold return water flows from the flow side until the burner "catches up" and reheats the buffer??.


1642343734934.png
 
I am going to carry out a test on just one rad soon because as you say, the only sort of fit is if the flow temperature falls as well, see below. I'm quite happy that I had a flow rate of 5LPM both by throttling the 5M pump setting to replicate yours and then at a pump head of ~ 3m unthrottled to give me the same 5LPM. As the boiler output was fairly constant (cycling) at 45 to 50% then the only scenarios that sort of fit are the last two below, ie a flow temp of 64C & return of 35C for 50% output and 45% output at 60C/34C, I didn't see my return going below 42/43C, the only explanation I can give for a apparent low flow temp is that a oil fired boiler acts as a 20/25 litre buffer tank and with the burner off perhaps cold return water flows from the flow side until the burner "catches up" and reheats the buffer??.


View attachment 72892

Are you saying that on your radiator readings the return pipe was 34 / 36c but at the boiler pipe you are measuring no less than 42/43c?

I suppose the return temperature will be a mix of all of the radiators as they flow back to the boiler. IE the first rad in ciruit will likely have the hottest flow and return temp - so maybe those rads you measured are further into the house?

The thing that bugs me with my Firebird is that it is trying too hard to maintain the 70c stat. It would be better if there was a lag of sorts there so it drops back a few C first then re-starts. Which would make it run longer when it does and less cycling. This other BEM mentioned in my other post above should address that cycling issue hopefully. I will need to open it up when it arrives and see what inputs it requires. I would imagine pipe stats will be needed on the boiler and it will connect between the boiler stat and burner, therefore learing the burn times and heating cycles / demand and being smarter than the stat to better control the burner. I think so anyway but time will tell on that one.
 
What I am saying is that the (theoretically) hottest return with a 72C flow temp is 37C, with perfect distribution through all the (6 rads), the lower the flow through any of the rads will result in a still lower return temp from that rad or rads which shuld result in a still lower boiler return temp.
I'm beginning to wonder if you think about TRVs and how they operate, they just keep throttling the flow until they get their set temperature but looking at the calcs below and your boiler/rad required output of 8.9kw based on a on/off times of 68secs/130secs then the TRV would have to shut off completely for some periods to allow the whole rad to cool down in one instance to allow a average flow temp of 60C as the return temp cannot be lower than the sensing/room temperature say a minimum of 24C, see below. The only way to achieve that measured return temp of ~ 41C is to have a average flow temp of 43C so perhaps a TRV is just opening/closing to achieve this and maybe this where evohome and others got their ideas from, where they use constant on/off boiler firing times to control the mean rad temperature necessary for any particular heat demand?.. The only other way is to have the flow temperature set to 43C with a very high flow rate, this, basically is how outside temperature compensation works I would think, also UFH.

That's why I a going to carry out a few tests soon on one rad and then maybe two/three to see what is actually going on. I can also use the TRVs as all my rads have them installed, all working perfectly.,


1642374595567.png
 
Last edited:
Carried out the TRV test on one X 1.7kw rad and as expected, the TRV was just copening/closing but keeping fairly tight control of the mean rad temp at ~ 42/44C which gave the required rad output of 0.6kw to maintain a room temperature of 20/22C. The boiler had very long cycling times of around 2.5 mins on and 35 minutes or more off. I then progressively introduced the remaining rads (all TRVd) and their mean rad temps reflected the outputs required, the combined return temp didn't vary hugely ~ 39/45C.
 
Carried out the TRV test on one X 1.7kw rad and as expected, the TRV was just copening/closing but keeping fairly tight control of the mean rad temp at ~ 42/44C which gave the required rad output of 0.6kw to maintain a room temperature of 20/22C. The boiler had very long cycling times of around 2.5 mins on and 35 minutes or more off. I then progressively introduced the remaining rads (all TRVd) and their mean rad temps reflected the outputs required, the combined return temp didn't vary hugely ~ 39/45C.

That's interesting on the off time of your boiler too- what return temp drop do you get before it fires up again? Eg - 4.5c drop before it re-fires
 
Its very difficult to get a good reading in the heat pac due to restricted space but initially it actually seems to rise a little but I suspect this is because the boiler flow pipe turns down immediately where as the boiler return goes out the side of the boiler and then very gradually rises so I think the boiler contents are inclined to "circulate" back through the return. The cycling time matches ~ the rad heat demand but its not that simple as the boiler once it cuts back in when the stat reaches ~ 60/65C has to reheat say 20/25 litres of boiler water from ~ 40c to its cut out of 70C so requires ~ 0.9kwh which takes ~ 2.7 minutes from a 20kw boiler. In general, once other rads are brought back on line then the % firing time does reflect the heat demand.
 
Its very difficult to get a good reading in the heat pac due to restricted space but initially it actually seems to rise a little but I suspect this is because the boiler flow pipe turns down immediately where as the boiler return goes out the side of the boiler and then very gradually rises so I think the boiler contents are inclined to "circulate" back through the return. The cycling time matches ~ the rad heat demand but its not that simple as the boiler once it cuts back in when the stat reaches ~ 60/65C has to reheat say 20/25 litres of boiler water from ~ 40c to its cut out of 70C so requires ~ 0.9kwh which takes ~ 2.7 minutes from a 20kw boiler. In general, once other rads are brought back on line then the % firing time does reflect the heat demand.

Thanks for that! I just can't help thinking my boiler Is cycling alot and probably wasting alot of heat up the flue whilst doing so. It's following the stat too closely. Hence why I believe a Boiler Energy Manager will greatly help my system efficiency. They monitor the flow and return temps and calculate the load on the system, controlling the burner.

I can't find any information on that Vector Group item I purchased from fleabay. From what I read they cost about £1600 - £2k from the company but someone on ebay with good feedback etc was selling a new unused one for £30 Inc postage 🤔

I'll open it when it arrives and see if anything is labeled and what sensors I would need. But may not be able to use it myself if nothing is labeled inside and its only meant to be fitted by them so looking at other BEM systems for Domestic boilers at present.

Plan is:
Balance all rads precisely and see if I can get return temps down

Meter the burner etc at 26kw setup and run for a few days.

Then downsize nozzle and re-run the same test.

Then fit a BEM (and / or try the Vector super unit) and re test to see what reduction in consumption they may offer if any.
 
Today I got the twin digital thermometers in the post. Which I wanted for accurate easy comparison of pipe temps.

20220119_193126.jpg

The first few I checked only had a few C drop.

I tried to guess the order of the rads and it wasn't working out. The first few would either die or have only a couple c difference. Couldn't get them to rise above that.

I did have luck adjusting one though which proves it is possible 😀

20220119_210127.jpg

So I should carry out the proper procedure. Open all rads, restart check order they heat. Cool again then start balancing in order from start. Will try to do that this Saturday all being well it will likely take ages!!

But I want to get it as balanced as possible. I'll aim for 9 or above I think the 11 or 12 may be out of reach but I'll try. The trick is to watch the flow temperature 🌡 so it doesn't start to drop whilst giving time for the difference to show. Aka easy to go too far and be on a false readout. It'll take me a while to get used to. I hope it's not working at present because I'm not following proper procedure!

The big kitchen rad in particular near boiler seems to want locksheild almost full open before it will heat up. Then drops dead if you turn below that. So some may not want to balance at all it is what it is.
 
Try with the pump speed on two instead of one
 
What are the dimensions of the kitchen rad and is it a double or single?.

The kitchen rad is a double myson 160cm wide x 50cm high panel. The pipe configuration isn't ideal on this one as it was a replacement bigger rad for an older one. Need to sink into floor still, may be able to make good in future:

20220119_221647.jpg

Try with the pump speed on two instead of one

Thanks I'll try that on Saturday. I'm thinking that since I'm not doing it correctly in order and all other locksheilds open that's not helping. So going by proper process maybe it will balance better.

Regarding the balancing just leave boiler stat at 70 or put up to 80 for the balancing procedure? And leave TRV heads on but full open / max temp?
 
Also it appears some of the TRVs are installed on the return side. This might make obtaining the desired 11c harder on those particular rads?

They are modern bi directional TRVs but still mixed up.

If thought to be a problem I could drain down and rectify that throughout house.
 
Tbh doesn’t really matter temp as that’s not a limiting factor

And tbh if your trying to balance it needs to be on the return as your throttling flow else
 
Tbh doesn’t really matter temp as that’s not a limiting factor

And tbh if your trying to balance it needs to be on the return as your throttling flow else

OK so yes boiler temp doesn't really matter.

Do you mean the locksheilds should be on the return pipe yes? If so I can rectify that throughout house where it occurs before I attempt a balance.
 
Would be best practice
 
Would be best practice

Yes that's OK I will make that good before I proceed - will try to get that done on Sat and system going again then balance on Sunday.

Since the upstairs and downstairs zones are programmed independently, I will balance them independently too.

This is a good video on the subject FWIW. Not how to balance but the theory of the efficiency and why it is important. A band aid to get a further rad to heat may be to turn pump speed up but as they explain it makes it worse even if that rad heats.

 
Any (if) build up of sludge in the rad itself has a huge effect on rad dT, I find that to make any appreciable difference in flowrate and dT that I would have to throttle in (either) one valve to only ~ 1/4 turn open, it seems, on my system anyway that I will only start increasing the dT by throttling from say 1/2 turn open, down.. Even with both valves fully open my rads have a dT of ~ 7C to 10C with a pump head of ~ 3.5M.
 
Last edited:
I checked the radiator valves and only a couple have the TRV on the return side. They are bi directional TRVs but all the same I will move them.

But thinking more about the 11c ideal temperature drop - how obtainable is this really? The Delta radiator temperature drop would be directly linked to the heat disapated into the room.

So the room temperature / weather would also be important.

It's very mild at present with temperatures outside at or near 7-10c. So in that case I think turning the boiler stat up for the balancing will provide better results unless the weather drops when I get to it.

Do you guys agree with what I'm saying in principle? If my rooms are 18c now, 7c outside and I am seeing 4 or 5 c drop max across a radiator then perhaps that is all it would achieve unless the room temperature dropped.

Maybe open the windows for balancing 😀
 
All my TRVs are on the returns and I can certainly balance/reduce rad outputs by throttling the lockshields, but as I said I reckon I would find it extremely difficult to get all rads to a dT of say 10C or 15c or whatever, having TRVs on all rads, once they throttle in will give a variable dT depending on the room temperature(s). I have watched my boiler return over the past few days and it never goes below 42/43C and probably averages more like 45/46C. I really think the best way to get a relatively constant low (but not below 38/ 40C for oil firing) is to use flow temperature control. You could get limited return temperature control by controlling the flow with a smart circ pump but this only allows a minimum rad output of ~ 58% whereas flow temperature control (if achievable) allows rad outputs as low as 30% with return temps not falling below ~36/38C.

1642716303417.png
 
All my TRVs are on the returns and I can certainly balance/reduce rad outputs by throttling the lockshields, but as I said I reckon I would find it extremely difficult to get all rads to a dT of say 10C or 15c or whatever, having TRVs on all rads, once they throttle in will give a variable dT depending on the room temperature(s). I have watched my boiler return over the past few days and it never goes below 42/43C and probably averages more like 45/46C. I really think the best way to get a relatively constant low (but not below 38/ 40C for oil firing) is to use flow temperature control. You could get limited return temperature control by controlling the flow with a smart circ pump but this only allows a minimum rad output of ~ 58% whereas flow temperature control (if achievable) allows rad outputs as low as 30% with return temps not falling below ~36/38C.

View attachment 73023

Controlling the return temperature would be good- but I am not a huge fan of smart pumps. On my house at least. Because some radiators drop out altogether. The pump now fitted does a great job.

But what I was thinking is wouldn't it be great to have a thermostatic device on the return pipe to the boiler which could sense the 50c return temp etc and maintain it. Eg throttle down automatically if the flow temp tries to climb above 50c but in all other instances normal flow. (Since I like 70c flow setting then 50c is what my system would be good at)

There must be something available along these lines. At a quick glance maybe something like this that can be set to thermostatically control a flow.


Get radiators balanced as precisely as possible first then something like this to provide precise control on return.
 

Attachments

  • Thermal-Balancing-Valve_TBV-002-0521_v4.pdf
    300.1 KB · Views: 10
Rad stats give individual room control so why throttle the main if the room stats are set properly and operating properly?. The boiler return temp will then be at its lowest possible but individual rad returns will vary from say 50/55C downwards, consistent with your requirement for a 70C constant flow temp, my rad stats give excellent individual room control.
 
Rad stats give individual room control so why throttle the main if the room stats are set properly and operating properly?. The boiler return temp will then be at its lowest possible but individual rad returns will vary from say 50/55C downwards, consistent with your requirement for a 70C constant flow temp, my rad stats give excellent individual room control.

Thanks yes not a great idea then was just throwing it out there as an alternative means to obtain the magical 20c drop if radiator balancing alone can achieve it.

Probably a case of do what you can with rad balancing and it is what it is. Eg 10c delta on boiler, if that's what you get then no more to reduce it by. But on colder days and warmup it will in realty be a greater delta.
 
Just read in a UPS 2 8M pump replacement post that a Dab Evoplus & a Grundfoss Magna 3 are suggested, you might be interested from the point of view that the also do temperature control, might be worth a look?.
 
Prob is the magna3 eg dt controlled with all the kit ends up around £600
 
Just read in a UPS 2 8M pump replacement post that a Dab Evoplus & a Grundfoss Magna 3 are suggested, you might be interested from the point of view that the also do temperature control, might be worth a look?.

Prob is the magna3 eg dt controlled with all the kit ends up around £600

I must read up on those but again I think my house suits a single speed pump.

Aka imagine some of the TRV valves start to close around the house. A smart pump would sense this and reduce the pressure or if it senses heat and modulates flow based on that then it would also throttle back the flow. And thus other radiators may fall dead again even when calling for heat.

It would work well no doubt in a new installation where the pipes and rads etc are properly designed installations but retrofitting into an old and somewhat unknown system / sizing probably won't give desired results IMO
 
Thinking more about it, would be inclined to agree with you, anyway when you balance your system you can just throttle the valve again until you get a average return temp of say 40Cish? and see how the system performs. if it is OK, then far cheaper maybe just to install a thermostatic valve in the line?. if it doesn't work you can just open it fully.
 
Thinking more about it, would be inclined to agree with you, anyway when you balance your system you can just throttle the valve again until you get a average return temp of say 40Cish? and see how the system performs. if it is OK, then far cheaper maybe just to install a thermostatic valve in the line?. if it doesn't work you can just open it fully.

Yes I'll balance it properly first and see where the temps are at then.

Then run when I can monitor run time and burn time for a few days. Then downsize nozzle and repeat for comparison.

Then add the boiler energy manager and see if that reduces cycling etc. If it does then I'll probably leave it set up like that.

The BEM company can't give good advice on the wiring FFS! Asked a few times and the emails back don't make sense. They appear confused if it should link before or after my boiler stat. So I'll probably have to test that too and see which setup works best.
 
If you can put up some instructions / wiring diagram will have a look later on
 
If you can put up some instructions / wiring diagram will have a look later on

Thanks for that, I attach the PDF manual and also an extract of the wiring diagram below:

Screenshot_20220121-180838_Adobe Acrobat.jpg


I have a CH wiring centre in my boiler room so no worries there. I understand their diagram also. But when I was simply asking that when installed on an oil boiler might it be best to link in before the boiler stat per diagram or go in between the stat and burner. Their reply was:

sorry for the delay responding, the black/grey cbles of the energy minder would smply wire in series with one of the cables from the boiler stat or their shoud be a link on the control panel for an external control wich would be removed and the black/grey cables wired into their place.

which doesn't help at all really they didn't understand what I was asking. I sent wiring diagram and photos of my boiler also. Anyway I'll follow their diagram and link thier black wires in between my "call live" wire from 240v zone valves switches and the boiler stat.
 

Attachments

  • energy-minder-auto-install.pdf
    359.7 KB · Views: 11
I was just thinking that if the logic in the board of the BEM would function better before or after the boiler stat.

If it goes before the stat then there will be instances where it will be calling for heat and the boiler stat is satisfied. Burner not firing.

If it goes between burner and boiler stat then only when the burner demand is being called by heating system and boiler stat will it get signal and be able to control without the boiler stat interfering.

Personally I think the later may be the better setup- what do you guys think? Not knowing the logic of the device fully means however I should prob follow their diagram all the same!
 
Not to confused things but I also did receive the Vector works BEM also. No instructions available for this one its top secret jobbie 🙄

On opening it, the connections are labeled. And it only has a power in, stat and boiler connections. No temperature monitoring aparantly. Not that I am qualified to comment but that hasn't stopped me before- appears limited for the high cost.

20220121_182627.jpg
 
Since the connections on the Vector unit were so simple I went ahead and wired it in temporarily at least. Boiler stat outlet going to "Stat" on its board. Burner wires connected to "boiler" on the board. Perm power added to remaining connection.

It appears to be working now. Upper figure is the call time of the boiler. Lower counter is the actual time it is firing the boiler.

So let's see if the house heats as well and the timers show a saving 🤔

20220121_201009.jpg
 
Havn't read all the posts yet so basically is it monitoring the cycle times and then by means of a relay interrupting the switched live to the boiler?. If so, what determines the optimum cycle time?.
 

Reply to Real world testing example of Condensing Boiler in older home in the Central Heating Forum area at PlumbersForums.net

Similar plumbing topics

Hi, Later this year I am going away for a 2 week holiday and as the weather will be warm there is no need for the heating to be on and arguably...
Replies
1
Views
182
  • Question
Ideal Logic 24, Previous problem was that the hot water was only cold or barely warm if the heating was in use. If heating was off and boiler cold...
Replies
2
Views
233
We run a community village hall and have a large kitchen provided for the use of hirers. This includes a Lincat SLR9 gas cooker which I believe is...
Replies
5
Views
564
Back
Top
AdBlock Detected

We get it, advertisements are annoying!

Sure, ad-blocking software does a great job at blocking ads, but it also blocks useful features of our website. For the best site experience please disable your AdBlocker.

I've Disabled AdBlock